We Sleep in Cycles

Video Topic : Our sleep progresses through four distinct cycles, and important upkeep tasks are going on during each one. We start out in light sleep, also called stage 1, when we can be easily awakened. This is followed by stage 2, when it would be slightly more difficult to wake us, and we are transitioning to deep sleep. During stage 3, deep sleep, most of the important cell repair and system restoration is happening. The fourth stage is rapid-eye movement (REM) sleep, when our brains are very active and dreaming takes place. We move through these cycles 4 or 5 times during a full night's sleep.

Sleep and Circadian Rhythms

Circadian rhythms are regular changes in mental and physical characteristics that occur in the course of a day (circadian is Latin for "around a day"). Most circadian rhythms are controlled by the body's biological "clock." This clock, called the suprachiasmatic nucleus or SCN (see figure 2 ), is actually a pair of pinhead-sized brain structures that together contain about 20,000 neurons. The SCN rests in a part of the brain called the hypothalamus, just above the point where the optic nerves cross. Light that reaches photoreceptors in the retina (a tissue at the back of the eye) creates signals that travel along the optic nerve to the SCN.

Signals from the SCN travel to several brain regions, including the pineal gland, which responds to light-induced signals by switching off production of the hormone melatonin. The body's level of melatonin normally increases after darkness falls, making people feel drowsy. The SCN also governs functions that are synchronized with the sleep/wake cycle, including body temperature, hormone secretion, urine production, and changes in blood pressure.

By depriving people of light and other external time cues, scientists have learned that most people's biological clocks work on a 25-hour cycle rather than a 24-hour one. But because sunlight or other bright lights can reset the SCN, our biological cycles normally follow the 24-hour cycle of the sun, rather than our innate cycle. Circadian rhythms can be affected to some degree by almost any kind of external time cue, such as the beeping of your alarm clock, the clatter of a garbage truck, or the timing of your meals. Scientists call external time cues zeitgebers (German for "time givers").

When travelers pass from one time zone to another, they suffer from disrupted circadian rhythms, an uncomfortable feeling known as jet lag. For instance, if you travel from California to New York, you "lose" 3 hours according to your body's clock. You will feel tired when the alarm rings at 8 a.m. the next morning because, according to your body's clock, it is still 5 a.m. It usually takes several days for your body's cycles to adjust to the new time.

To reduce the effects of jet lag, some doctors try to manipulate the biological clock with a technique called light therapy. They expose people to special lights, many times brighter than ordinary household light, for several hours near the time the subjects want to wake up. This helps them reset their biological clocks and adjust to a new time zone.

Symptoms much like jet lag are common in people who work nights or who perform shift work. Because these people's work schedules are at odds with powerful sleep-regulating cues like sunlight, they often become uncontrollably drowsy during work, and they may suffer insomnia or other problems when they try to sleep. Shift workers have an increased risk of heart problems, digestive disturbances, and emotional and mental problems, all of which may be related to their sleeping problems. The number and severity of workplace accidents also tend to increase during the night shift. Major industrial accidents attributed partly to errors made by fatigued night-shift workers include the Exxon Valdez oil spill and the Three Mile Island and Chernobyl nuclear power plant accidents. One study also found that medical interns working on the night shift are twice as likely as others to misinterpret hospital test records, which could endanger their patients. It may be possible to reduce shift-related fatigue by using bright lights in the workplace, minimizing shift changes, and taking scheduled naps.

Many people with total blindness experience life-long sleeping problems because their retinas are unable to detect light. These people have a kind of permanent jet lag and periodic insomnia because their circadian rhythms follow their innate cycle rather than a 24-hour one. Daily supplements of melatonin may improve night-time sleep for such patients. However, since the high doses of melatonin found in most supplements can build up in the body, long-term use of this substance may create new problems. Because the potential side effects of melatonin supplements are still largely unknown, most experts discourage melatonin use by the general public.

National Institute of Neurological Disorders and Stroke

What are circadian rhythms?

Circadian rhythms are physical, mental and behavioral changes that follow a roughly 24-hour cycle, responding primarily to light and darkness in an organism's environment. They are found in most living things, including animals, plants and many tiny microbes. The study of circadian rhythms is called chronobiology.

Illustration of a human brain with the suprachiasmatic nucleus labelled.

Are circadian rhythms the same thing as biological clocks?

No, but they are related. Our biological clocks drive our circadian rhythms.

What are biological clocks?

The biological clocks that control circadian rhythms are groupings of interacting molecules in cells throughout the body. A "master clock" in the brain coordinates all the body clocks so that they are in synch.

What is the master clock?

The "master clock" that controls circadian rhythms consists of a group of nerve cells in the brain called the suprachiasmatic nucleus, or SCN. The SCN contains about 20,000 nerve cells and is located in the hypothalamus, an area of the brain just above where the optic nerves from the eyes cross.

Do circadian rhythms have a genetic component?

Yes. Researchers have already identified genes that direct circadian rhythms in people, fruit flies, mice, fungi and several other model organisms used for studying genetics.

Does the body make and keep its own circadian rhythms?

Circadian rhythms are produced by natural factors within the body, but they are also affected by signals from the environment. Light is the main cue influencing circadian rhythms, turning on or turning off genes that control an organism's internal clocks.

How do circadian rhythms affect body function and health?

Circadian rhythms can influence sleep-wake cycles, hormone release, body temperature and other important bodily functions. They have been linked to various sleep disorders, such as insomnia. Abnormal circadian rhythms have also been associated with obesity, diabetes, depression, bipolar disorder and seasonal affective disorder.

How are circadian rhythms related to sleep?

Circadian rhythms are important in determining human sleep patterns. The body's master clock, or SCN, controls the production of melatonin, a hormone that makes you sleepy. Since it is located just above the optic nerves, which relay information from the eyes to the brain, the SCN receives information about incoming light. When there is less light—like at night—the SCN tells the brain to make more melatonin so you get drowsy.

How are circadian rhythms related to jet lag?

Jet lag occurs when travelers suffer from disrupted circadian rhythms. When you pass through different time zones, your body's clock will be different from your wristwatch. For example, if you fly in an airplane from California to New York, you "lose" 3 hours of time. So when you wake up at 7:00 a.m., your body still thinks it's 4:00 a.m., making you feel groggy and disoriented. Your body's clock will eventually reset itself, but this often takes a few days.

Sleeping fruit flies

How do researchers study circadian rhythms?

Scientists can learn about circadian rhythms by studying humans or by using model organisms that have similar "clock" genes. Basic researchers doing these experiments can control the subject's environment by altering light and dark periods and then look for changes in gene activity or other molecular signals.

How does circadian rhythm research contribute to human health?

Understanding what makes biological clocks tick may lead researchers to treatments for sleep disorders, jet lag and other health problems. Learning more about the genes responsible for circadian rhythms will also enhance our understanding of biological systems and the human body.

NIGMS / National Institutes of Health / http://www.nigms.nih.gov

Related Videos

What Is Sleep Apnea?
What Is Sleep Apnea?
Make Sleep a Priority
Make Sleep a Priority
Sleep and Your Weight
Sleep and Your Weight
Could You Have Sleep Apnea?
Could You Have Sleep Apnea?
Seniors Need Sleep
Seniors Need Sleep
Treating Sleep Apnea
Treating Sleep Apnea

The material on this site is for informational purposes only and is not intended as medical advice. It should not be used to diagnose or treat any medical condition. Consult a licensed medical professional for the diagnosis and treatment of all medical conditions and before starting a new diet or exercise program. If you have a medical emergency, call 911 immediately.